المعين Options
المعين Options
Blog Article
المعين هو شكل هندسي يتكون من أربعة أضلاع أو جوانب لها نفس الطول، فمعرفة قياس طول ضلع واحد فيها يعني معرفة جميع أطوال الأضلاع الأخرى لأنها تكون بنفس القياس، كما تكون أضلاعها المتقابلة متوازية، كما يوجد للمعين ارتفاع يمكن قياسه من طول الخط الواصل بين منتصف الضلعين المتقابلين، ويتميز المعين بوجود قطرين أيضًا، ويكون قياسهما عبارة عن طول الخطوط التي تصل بين الزوايا المتقابلة مع بعضها البعض في المعين، ويتميز القطران بأنّه يتعامد كل منهما على الآخر كما أنهما يُنصّفان الزوايا التي يمران من خلالهما، أما زوايا المعين الأربعة فإن كل زاويتين متقابلتين في المعين متساويتين في القياس، حيث يكون زوجين من الزوايا حادتي القياس بينما الزوجين الآخرين منفرجتي القياس، أما إذا كانت إحدى زواياه قائمة فإنّه يتحول إلى مربع، وفيما يأتي ذكر أبرز طرق حساب المعين.[٢]
استخدامُك هذا الموقع هو موافقةٌ على شروط الاستخدام وسياسة الخصوصية. ويكيبيديا ® هي علامة تجارية مسجلة لمؤسسة ويكيميديا، وهي منظمة غير ربحية.
يمكن رسم دائرة داخل المعين يمس محيطها أضلاع المعين الأربعة، وتكون:
تسجيل الدخول more info الاجتماعي لا يعمل في نوافذ التصفح المخفي والخاص. يُرجى تسجيل الدخول باسم المستخدم الخاص بك أو بريدك الإلكتروني للمتابعة.
قوانين حساب محيط المثلث يمكن حساب محيط أي مثلث حسب القانون الآتي: محيط المثلث = مجموع أطوال أضلاعه...
رجوع ما المراجع المعتمدة لتعريف المؤسسة التعليمية؟ لماذا مجموع مربعين لا يحلل؟ أسئلة ذات صلة
المسرح والسينما رسل وأنبياء تجارب وخبرات طب
المعين هو عبارةٌ عن شكلٍ هندسيٍّ مضلع ثنائي الأبعاد، يُستخدم في الكثير من المجالات والتطبيقات في مجال الرياضيات وفي حياتنا العلمية والعملية، وتُعرف مساحة المعيّن على أنها المساحة المحدودة بأضلاع المعين، أي داخل محيط المعين، ويوجد عدة قوانين وطرقٍ رياضيةٍ لحساب مساحة المعين سوف نشرحها بالتفصيل في هذا المقال مع ذكر بعض الأمثلة.
يعتبر المربع والمعين من الأشكال الرباعية الهندسية التي نراها كل يوم، فعلى سبيل المثال، نرى شكل المربع في الطاولات، وصناديق البيتزا، بينما نرى الألماس والطائرة الورقية تتخذ شكل المعين، وغالباً يعتبر المربع معينًا لأنه يطبق خصائص المعين، أما المعين فلا يعتبر مربع، وذلك بسبب اختلاف بعض الخصائص الأخرى بينهما.[١]
حساب المساحة من طول أحد الأضلاع، ومن جيب إحدى زاوياه: باستخدام القانون الآتي:
و هو شكل رباعيّ الأضلاع، أضلاعه متساوية، والأضلاع المتقابلة متوازية، لكنّ زواياه غير متساوية، حيث إنّ كل زاويتين متقابلتين متساويتين فقط، بينما المربّع جميع زواياه قائمة، ومتساوية (تسعون درجة). عند تنصيف المعين بخطّ عموديّ وآخر أفقيّ، تنتج لدينا أربع مثلّثات: متساوية الساقين، ومتطابقة.
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. فضلًا شارك في تحريرها.
متساوي الأقطار · متعامد الأقطار [الإنجليزية] · دائري (ثنائي المركز) · مماسي (مماسي خارجي) · لامبرت · ساتشري
ﻭﺍﻟﺴﻴﻒ ﻓﻲ ﺍﻟﻐﻤﺪ ﻻ تخشى ﻣﻀﺎﺭﺑﻪ ﻭﺳﻴﻒ ﻋﻴﻨﻴﻚ ﻓﻲ ﺍلحالين ﺑﺘﺎﺭ
قطري المربع يقطعان بعضهما البعض بزوايا قائمة، وأيضاً قطري المعين ينصفان بعضهما البعض بزوايا قائمة.
Report this page